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Abstract: Polarization imaging has outstanding advantages in the field of scattering imaging,
which still encounters great challenges in heavy scattering media systems even though there are
helps from deep learning technology. In this paper, we propose a self-attention module (SAM)
in multi-scale improved U-net (SAM-MIU-net) for the polarization scattering imaging, which
can extract a new combination of multidimensional information from targets effectively. The
proposed SAM-MIU-net can focus on the stable feature carried by polarization characteristics
of the target, so as to enhance the expression of the available features, and make it easier to
extract polarization features which help to recover the detail of targets for the polarization
scattering imaging. Meanwhile, the SAM’s effectiveness has been verified in a series of
experiments. Based on proposed SAM-MIU-net, we have investigated the generalization abilities
for the targets’ structures and materials, and the imaging distances between the targets and the
ground glass. Experimental results demonstrate that our proposed SAM-MIU-net can achieve
high-precision reconstruction of target information under incoherent light conditions for the
polarization scattering imaging.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-quality imaging through scattering media is of great significance for atmospheric remote
sensing [1–3], underwater imaging [4–6], biological tissues imaging [7–8], and other applications
[9–11]. So far, various methods have been proposed to improve imaging quality [12–19],
in which polarization-based methods, as one of the most effective techniques, have received
many achievements. J. S. Tyo et al. have proposed the Polarization Difference (PD) method
for improving the imaging quality through scattering media [20]. Y.Y. Schechner has added
polarization effects into the model of atmospheric defogging to improve the defogging effect [21].
Liu et al. have proposed an active polarization imaging method based on wavelength selection
[22], which takes advantage of the dependence of scattered light at different wavelengths in the
turbid underwater environment. Liang et al. have proposed the estimation parameter of the
angle of polarization (AoP) can be used in dense fog environments [23], which significantly
improves the clarity of blurred images. Li et al. have presented a method based on Stokes vector
images to recover objects in turbid water [24]. Guo et al. have obtained the Muller matrix
(MM) of a scattering medium based on the Monte Carlo (MC) algorithm [25] and proposed
a method of polarization inversion to recovery targets in layered dispersion systems [26–27].
In recent years, deep learning-based methods have developed rapidly and are considered to
be a method that surpasses traditional methods and improves the performance of polarization
scattering imaging. Li et al. have established a dataset consisting of the Stokes vector images and
proposed a polarized image denoising network (PDRDN) based on the residual dense network
[28]. Hu et al. have presented a method of polarized underwater image defogging based on
deep learning [29], and on this basis, they mathematically converted the two polarization-related
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parameters into a separate parameter, enabling the network to learn the polarization modulation
parameters and obtain a clear de-scattering image [30]. Li et al. have considered changes in
polarization information when light interacts with targets and transmits in the turbid system.
They have combined polarization theory and deep learning and designed an end-to-end network
for target reconstruction in a scattering environment [31]. Polarization is a superior characteristic
of light, but it is not presenting in a direct way. We must use some optical elements to be able to
observe it, and the detection methods are also indirectly detected by the intensity. What is more,
the energy loss caused by the optics will also lead to a serious decrease in the signal-to-noise
ratio of the picture.

Therefore, when polarization pictures captured by the detector are directly entered into the
model, the network may not extract enough useful information sufficiently and accurately,
resulting in the inability to recover the target efficiently. Therefore, here, we try to provide enough
information for the reconstruction network by entering multidimensional information about the
target. On this basis, by introducing a self-attention module (SAM) into the multi-scale improved
U-net (MIU-net) to form an SAM-MIU-net, the network focuses on the target information carried
by the polarization characteristics and enhances the expression of features by giving weights to
the feature matrix itself, reducing redundant output and improving the robustness of the network.
The experimental results prove that our proposed SAM-MIU-net has significantly improved the
reconstruction result, and the test results of complex structures, different materials, and different
imaging distances also show that our proposed SAM-MIU-net has superior effectiveness and
generalization.

2. Methodology

2.1. Polarization information

The Stokes vector is a common expression of the polarization information, and it can represent
polarized and unpolarized light with four components S= (I, Q, U, V) T , all of which are scalars
and express the light intensity information without phase [32]. The Stokes vector can be calculated
as:

S =
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where I is the total light intensity, which provides global information of targets; Q is the difference
between horizontal and vertical components, which is the difference between the components
in two orthogonal directions, so Q images have a certain inhibition effect on backscatter; U is
the difference between 45° and 135° components, and V is the difference between right-handed
and left-handed components. In addition, further polarization information such as the degree
of polarization (DoP) and AoP can be obtained by the Stokes vectors. The degree of linear
polarization (DoLP) represents the ratio of the linear-polarization component to the total light
intensity:

DoLP =
√︁

Q2 + U2

I
, (2)

We can get more detailed information about the target through DoLP images. Previous research
[33] has fused intensity pictures with DoLP pictures to provide each other with complementary
information about the target to improve the resolution of images. Here, we consider that a
single polarization picture cannot provide sufficient target characteristics for the network, so we
regard the light intensity, Q, and DoLP images as three-dimensional data and input them into
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the network. By taking advantages of the powerful data mining and learning capabilities of the
neural networks, three-dimensional information can be fully extracted and fused for the target
reconstruction.

2.2. Measurement system

We constructure the experimental setup as shown in Fig. 1 to obtain the polarization dataset. A
liner polarizer is placed in front of the LED light source, which allows the captured picture to
contain more pronounced polarization information, aiding in subsequent image recovery [34].
The light of S= (1, 1, 0, 0) T can transmit from the ground glass, which will be irradiated to
the target and reflected from it. Then the reflective light that carries the targets’ information of
transmits through the ground glass and will be captured by the commercial DoFP (division of
focal plane) polarization camera (LUCID, PHX055S-PC) with pixel counts of 2048× 2448. The
pixel array surface of DoFP is covered with a polarization array consisting of four micro-polarizers
with four different polarization orientations of 0°, 45°, 90°, and 135° respectively. Then the
needed images for the polarization dataset can be calculated by them easily. In our experiments,
the target is put at a certain distance behind the ground glass of 4 mm, and the distance between
the target and the ground glass is defined as d.

Fig. 1. Schematic of the experimental setup.

2.3. Network design

Inspired by the network architecture proposed by Zhen et al. [35], we have improved the network
structure used in the previous work [31], in which we use different-size down-sampling strategies
in the middle part of the U-Net to extract target features at different levels. Here, the newly
proposed network consists of two stages, in which the former part includes a multi-scale feature
extraction network, and the latter part is a fusion reconstruction stage network of different levels
of features. We utilize the SAM to optimize the feature exchange between two stages, to ensure
that the polarization features that are most conducive to the target reconstruction can be well
transmitted to the next stage, improving the reconstruction quality and generalization of the
network.

As shown in Fig. 2, the backbone network is modified based on the improved U-Net of the
previous work [31]. The former part is a feature extraction part composed of three sets of dense
blocks, and at the end of each block, the max-pooling of the size of 2×2 reduces the feature
to half of the previous level. If we input the target’s multi-dimensional information into the
network directly, it will not be conducive for information to play its role when the features are
modulated inside the network, but also will cause information redundancy, which is not conducive
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to improving the efficiency and robustness of the network. Therefore, when the feature size is
reduced to 64×64, we divide the network into four branches and use 1×1, 2×2, 4×4, and 8×8 max
pooling respectively to extract the existing features in different levels and degrees. Through this
method, the different roles of multi-dimensional information in the reconstruction of the target
can be refined, and features are divided into different channels to the next stage, thereby reducing
the superposition of information and improving the efficiency of the network. Most networks
that require multi-branch fusion connect features directly and then pass them to the next stage.
However, we want more than just fusion, but also filtering redundant information and enhancing
polarization characteristics that facilitate target reconstruction. Wang et al. [36] proposed that the
SAM can aggregate global information from the feature map. Therefore, here, we introduce the
SAM to reduce the redundant output of the first-level network, aggregate effective polarization
features by establishing the interaction of feature information between different channels, and
enhance the input features to the next stage for feature fusion.

Fig. 2. The overall structure of the used U-net.

The SAM’s network structure is shown in Fig. 3. The inputs are first fed into three different
convolutional layers (i.e., Conv1, Conv2, Conv3) with kernel size of 1×1, which do not change
the spatial size of feature, to generate the query (Q), key (K), and value (V) matrix. Then,
according to the equations (3) and (4), the Q vector interacts with K vector using the dot-product
operators to produce a scalar weight (i.e., the attention map Att) for the corresponding V vector.
Subsequently, the attention map Att vector is applied on the V vector to generate the Y vector.

Att = Q · KT , (3)

Y = V · Att, (4)

Outputs = GroupNorm(Convz(Y , Wµ)) + Inputs, (5)

Next, the computational complexity is reduced by convolution. The final output of the SAM is
shown by Eq. (5), in which a residual structure is formed with the initial input to ensure that the
feature information is not lost. Finally, the features enhanced and focused by the SAM are input
into the dense block, and then recomposed into the target image of 256×256 by up-sampling and
convolution layers. Furthermore, to better reconstruct the target’s information, two up-sampling



Research Article Vol. 31, No. 2 / 16 Jan 2023 / Optics Express 3050

schemes, i.e., transposed convolution and bilinear interpolation, are considered in the decoder and
multiscale module. Fig. 4 demonstrates the performances’ comparison between using transposed
convolution and utilizing bilinear interpolation in the decoder and multiscale module. It can be
seen that the transposed convolution is more conducive to the final reconstructions of targets.
Hence, in subsequent experiments, we have used transposed convolution as the up-sampling
operation.

Fig. 3. Schematic of the SAM.

Fig. 4. The effects of different up-sampling operations.

During training, the MAE acts as a loss function to drive the interaction of polarization features
within the network.

MAE =
1

M × N

M∑︂
i=1

N∑︂
j=1

| |X(i, j) − Y(i, j)| |, (6)

We trained the model in an image processing unit (NVIDIA RTX 3080) using a Pytorch
framework with Python 3.6, training 150 epochs. The optimizer is the Adam (Add Momentum
Stochastic Gradient Descent) with a learning rate of 0.001.

2.4. Imaging quality

Mean Squared Error (MSE) and Structural Similarity Index (SSIM) [37] are two common data
metrics used to evaluate imaging quality. The MSE between the original image and the predicted
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image (O, K) with the size of m×n can be expressed by:

MSE =
1

MN

m−1∑︂
i=0

n−1∑︂
j=0

[O(i, j) − K(i, j)]2, (7)

The smaller its value means the better the recovery results.
In addition to the evaluation of the noise situation, the quality of the reconstruction image

can be evaluated by introducing structural similarity based on the degradation of structural
information. The SSIM compares the brightness, contrast, and structure of the two images by:
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where µx is the mean of X, µY is the mean of Y, σx is the variance of X, σY is the variance of Y,
σXY is the covariance of X and Y, and C1 and C2 are small normal numbers used to avoid the zero
denominator. The SSIM value range is 0 to 1. The higher value of the SSIM, the more similar
the two images, which means a better network reconstruction.

2.5. Dataset preparation

The scattering images captured by the camera as shown in Fig. 5 are cloudy under incoherent light
conditions. When the distance between the ground glass and the target is moved, the sharpness
of the scattering images will also change, that is, the greater the distance, the blurrier the picture.
The training set is composed of three kinds of scattering images, S0, S1, and DoP, at the distance
of d= 4 cm between the ground glass and the target as shown in Fig. 5, and the following inputs
for different test experiments are also composed of three-dimensional data. Our dataset includes
200 groups of polarized images, and each has four sets of images corresponding to different
polarization orientations (0°, 45°, 90°, and 135°). On this basis, the images needed for training
can be calculated by Eqs. (1,2). Also, the targets are all made up of digits in different fonts. In
addition, 200 scattering images are expanded to 2000 images as training sets. All of our data are
grayscale images, and the final outputs are also grayscale images. After collecting and classifying
the data, the proposed methods can be used.

Fig. 5. (a) Original target; (b) Scatting imaging by S0; (c) Scatting imaging by S1; (d)
Scatting imaging by DoP.

3. Results and discussions

3.1. Enhanced performances from the SAM

Polarization characteristics can distinguish the ballistic and scattering photons to some extents,
so the network trained with polarization information will be more stable. In this section, in
order to demonstrate that the SAM can help the network to focus and enhance the stable target
characteristics carried by polarizations, we conduct the comparative experiments with or without
the SAM in the network. We name WSAM-MIU-net for the circumstance of MIU-net without
SAM. We use the same training set to train the SAM-MIU-net and WSAM-MIU-net, respectively,
and obtain the corresponding optimal model for comparative testing as shown in Fig. 6, in which
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Fig. 6(b) is the scattering images of the light intensity, but the test sets also consisted of scattering
images of S0, S1 and DoP (for the sake of image simplicity, we only show the scattering images
of the light intensity in the following result display).

Fig. 6. The reconstruction result of different models. (a)Untrained digital images;(b)
Scattering images;(c) The reconstruction results without SAM; (d) The reconstruction results
with SAM.

It can be clearly seen that the results of the SAM-MIU-net all have higher contrast and clarity,
and the background has no interference noise. Nevertheless, the results of the WSAM-MIU-net
cannot incompletely rebuild more complex targets, such as the second target (“5”), and all the
test results contain background noise. The results prove that the SAM can guide the network to
focus on and enhance the target characteristics carried by the polarization information, filter out
the redundant information, and improve the reconstruction performance. At the same time, we
also calculated the average SSIM and MSE of the reconstructed result that be shown in Table 1.
Ultimately, the reconstructing performance of the model with SAM has been greatly improved,
where the SSIM has increased by 7.4% and the MSE has decreased by 11%.

Table 1. The average SSIM and MSE of the different models

Model SSIM ↑ MSE ↓

SAM-MIU-net 0.8175 0.00304
WSAM-MIU-net 0.7609 0.00345

In addition, we output the features in the middle of the network to explore the physical process
of the proposed network. Firstly, we output the features of the four branches as shown in
Fig. 7(a). It can be seen that different branches extract the different aspect features, and refine
the contribution of multi-dimensional information to the target reconstruction, which will avoid
redundancy caused by information superposition and affect the performance of the model. After
that, we export the feature maps from the networks with SAM and without SAM respectively,
which has been shown in Fig. 7(b). By visualizing the features, we can know the aggregation
and enhancement effect of the SAM on the polarization features. Through the above operations,
the features are exported to the next modules for information fusion, which will improve the
performance of reconstruction under incoherent conditions.
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Fig. 7. Visualization of features in the middle of the networks. (a) The output of the
subscale branch; (b) The output after the subscale branch for the networks with SAM and
without SAM.

3.2. Performances of SAM-MIU-net on untrained targets

3.2.1. Untrained different-structure targets

In this section, we test the trained SAM-MIU-net with more complexity targets while other
conditions are unchanged to further verify the generalization. The alphabetical targets and
graphic targets, which are not in the training sets, are entered into the trained network, and the
reconstruction results are obtained in Fig. 8. Alphabetical targets and graphic targets, which
belong to different structural types from training sets, can be also accurately reconstructed by our
method. In case of the limited number of training data, the target structure is reestablished without
excessive noise in the background. The structure of graphic targets is the weakest correlation
with the training dataset, but the results are still reconstructed with little distortion. From the
Fig. 8, our proposed method can reestablish untrained objectives with high contrast, and there
is no excessive noise in the background. It can be proved that the SAM-MIU-net has excellent
generalization ability for targets’ structures.

Fig. 8. The reconstruction result of SAM-MIU-net. (a)Original images; (b) Scattering
images; (c) Reconstruction results.

In addition to visual effects, the superior effectiveness and generalization of the SAM-MIU-net
can be also seen from the average SSIM and MSE of results in Table 2. Even the less correlated
graphical targets also have better performances of SSIM and MSE.

Table 2. The average SSIM and MSE of the different targets

Target SSIM ↑ MSE ↓

Alphabetical targets 0.7882 0.00320

Graphic targets 0.7628 0.00338
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3.2.2. Untrained different-material targets

Polarization properties are very sensitive to different materials, so we explored the concrete
effects of different materials on the trained model. We change the materials of target-background
to Ink-Wood, Paper-Steel, and Paper-Wood sequentially, and place them in the same experimental
environment to obtain scattering images of different components. The test results can be obtained
by entering their scattering images into the SAM-MIU-net trained by the target-background of
Ink-Paper, as depicted in Fig. 9.

Fig. 9. The reconstruction results of different target-background: Ink-Wood, Paper-Steel,
and Paper-Wood. (a) Original images; (b) Scattering images;(c) Their reconstruction results
from the SAM-MIU-net trained by the target-background of Ink-Paper.

Table 3 [3,38] shows the corresponding elements in the Mueller matrix (MM) of the materials
used in our experiment. When objects are set as “Ink-Wood”, the difference of corresponding
MM elements of paper and wood are small, so, the model can reconstruct the ink target relatively
completely. Besides, when the target materials are set as “Paper-Steel”, other conditions remain
unchanged. From Table 3, the corresponding MM elements of ink and steel are similar, so, their
scattering images are similar to the “Ink-Paper”, resulting in targets can be reconstructed like
result got by Ink-Paper model. Lastly, when “Paper-Wood” targets are set, due to the similar
corresponding MM elements of paper and wood, only the target profile can be distinguished.
From the results, it can be known that when the material is not trained by the neural network,
the performances of the target reconstruction will be decreased, and the performance of the
reconstruction is related to the difference in polarization characteristics between the training
material and the test material. More importantly, SAM-MIU-net reconstructs the target with
more completeness and higher contrast. The SAM also will enhance features that are similar to
the polarization characteristics of training targets, which is of great effect on model scalability
imaging. Besides, we have also calculated the average SSIM and MSE of the reconstructed
different-material targets shown in Table 4.

Table 3. Mueller matrix elements of different materials [3,38]

Material m22 m33

Paper 0.265 0.247

Wood 0.215 0.16

Ink 0.892 0.921

Steel 0.980 0.977

In summary, our proposed method has a certain ability and generalization due to that the SAM-
MIU-net will enhance the expression of polarization features in the process of reconstructing the
targets.
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Table 4. The average SSIM and MSE of the different-material targets

Target Ink-Wood Paper-Steel Paper-Wood

SSIM ↑ 0.4969 0.4147 0.3372

MSE ↓ 0.00341 0.00357 0.00378

3.2.3. Untrained different-distance imaging

The values of MM for different materials will be different, so their polarization properties will be
also different. In addition, when targets and scattering media are determined in a system, the
MM of those will not change. As a result, the network trained by polarization information is
more robust. So, our proposed SAM-MIU-net can reconstruct the targets with different distances
(the targets move within a certain range). In this section, we will demonstrate that the proposed
method has strong stability by reconstructing the scattering images obtained at different distances
of d, as shown in Fig. 10.

Fig. 10. (a)(c)(e)(g) The result without SAM; (b)(d)(f)(h) The result with SAM.

When d= 3.5 cm, there is enough target information for target reconstruction, and the stable
polarization information improves the quality of results. Besides, we also show the test results
from the WSAM-MIU-net, in which the reconstruction results from the SAM-MIU-net are more
stable than those from the WSAM-MIU-net when the distance is longer than 4 cm. Particularly,
when d= 5, the SAM-MIU-net can still distinguish the targets, but the WSAM-MIU-net can’t.
Comparison results prove that the aggregation effect of SAM on the polarization characteristics
enhancing the expression of stable target features carried by the polarization and improving the
flexibility of network. Ultimately, the SAM-MIU-net is capable of extended imaging beyond the
distance of the training set by 25%, and achieve efficient elastic imaging. At the same time, we
calculated the average SSIM and MSE of the reconstruction result at different d for both cases.
From Table 5, the data for the model with SAM is generally better, and the values at different d
are more stable.

3.3. Performance comparison with other existing methods

In this section, we compared our proposed SAM-MIU-net with several existing methods, including
Dark Channel Prior (DCP) [39], PDN [29] (Hu proposed the method based on RDB to dehaze
using 0°, 45° and 90°), PU-Net [40] (Zhang proposed the method based on U-Net to dehaze
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Table 5. The average SSIM and MSE of the different networks at different distances of d

SAM-MIU-net d= 3.5cm d= 4.0cm d= 4.5cm d= 5.0cm

SSIM ↑ 0.8029 0.7928 0.7758 0.7729

MSE ↓ 0.00351 0.00312 0.00356 0.00358

WSAM-MIU-net d= 3.5cm d= 4.0cm d= 4.5cm d= 5.0cm

SSIM ↑ 0.7565 0.7374 0.7352 0.7253

MSE ↓ 0.00362 0.00334 0.00367 0.00369

using 0°, 45°, 90°, 135° and S0), and MU-DLN [31] (Li proposed the method based on modified
U-Net using Q-component). The corresponding results are shown in Fig. 11 respectively. To
make a fair performance comparison, except for the DCP method, all the methods first used the
same training set to learn the model of polarization scattering imaging, and then employed the
same testing set to verify their performances accordingly.

Fig. 11. The obtained results with different methods

From the results, the DCP method achieves a slight dehazing effect and does not fully visualize
the targets, and then the PDN method cannot clearly recover the target, which may not be suitable
for more blurry pictures in complex environments. Although the PU-Net can relatively recover
part of the target structure, there is more noise around it. The MU-DLN method input the
polarization information of S1, only one of the components of the Stokes vector, and the recovery
result is incomplete and not in high contrast. On the basis of MU-DLN, we retrain that by using
the training sets (i.e. I, Q, DoP) used in this article to get 3D-MU-DLN. And the recovery
results are better than those of MU-DLN, but there are also cases where the target recovery
is incomplete. In contrast, our proposed SAM-MIU-net is able to completely reconstruct the
target structure, enhance the contrast, and make the background have less excessive noise in
complex environments. In Table 6, the SSIM and MSE of different methods are calculated, and
our proposed SAM-MIU-net obtained better reconstruction performance than other methods.
In addition, we calculate the parameters and Floating Point Operations (FLOPs) for different
methods to assess the complexity of the network. It can be seen that our method has high quality
while having fewer parameters and calculations.

Table 6. The evaluation indicators of the different methods

Method DCP PDN MU-DLN PU-Net 3D-MU-DLN Ours

SSIM ↑ 0.4969 0.6618 0.6736 0.6972 0.7363 0.7755
MSE ↓ 0.1330 0.003484 0.00335 0.00323 0.00352 0.00315

Params/M \ 0.08 53.86 53.87 55.18 1.13
FLOPs/M \ 5322.57 68136.58 68400.82 68604.44 5970.42
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4. Conclusion

In this manuscript, given the not obvious polarization characteristics and the limitations of the
detection system, we use multidimensional polarization information to characterize the target
and use multi-scale extraction to refine the contribution of multi-dimensional information for
the reconstruction target, which also will avoid information redundancy caused by information
superposition. The SAM is introduced to aggregate global information, and enhance the
polarization characteristics which will input subsequent reconstruction modules. Experiments
have verified that the SAM-MIU-net has greatly improved generalization and stability. And
through the intermediate feature output, we can visualize the influence of our proposed module
on the final reconstruction result. It notes that the application of multidimensional information
to target features is of great significance for target reconstruction in complex scenarios, such
as in the optical remote sensing. In future works, to further improve the performance of
polarization scattering imaging, we will focus on the following points: (i) extracting the available
information from multi-material target information using the supervised learning algorithms for
more scenes reconstruction; (ii) due to the relatively complex acquisition of polarization data
sets, it is significant to consider using a small number of training samples to achieve high-quality
reconstruction.
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